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To solve many problems in gasdynamics, a single mathematical description of the thermo-
dynamic properties of water over a wide range of states covering both normal and superhigh
pressures and temperatures is necessary. Existing equations of state (e.g., those given in
[1-4] ete.) hold over limited ranges of variation of the thermodynamic parameters. In[5] 2
method is proposed for constructing interpolation equations of state of water and water vapor
over a wide range of uniform states, and thermodynamic functions are obtained whichdescribe
with satisfactory accuracy the properties of the medium in the pressure range p> 108 Pa (1 Pa=
10~° bar), In this paper we refine and develop the results obtained in [5] in order to construct
a single analytical description of the properties of water in the region of uniform and two-phase
states. '

The description of the thermodynamic properties over the whole region of uniform states is based on the
determination of the thermodynamic functions of the medium for certain reference states and a fairly smooth
interpolation between these states. To construct interpolation thermodynamic functions, we will represent the

free energy in the form
F=Ex+FR+FOH+ AF1+AF2+Fg7 (1)

where Ey is the energy of elastic interaction when T =0, Fk is the thermal part of the free energy of the con-
densed state of the medium, Fon is the free energy of the hydrogen bonds and other effects not taken into ac-
count by the terms in (1), AF; and AF, are corrections that take into account evaporation and dissociation,re-
spectively, and Fe is the free energy of the electron state.

The hydrogen bonds exist in the region below the critical temperature T,p. Hence, in the region T > Tpy
we assume Fop=0.

An expression for Fg can be obtained from the assumption that in the condensed state the water molecule
executes translational vibrations in three mutually perpendicular directions, rotational vibrations in two direc-~
tions perpendicular to the dipole axis, and free rotation around the dipole axis, The free energy of the transla-
tional and torsional oscillations can be described in the Debye approximation [6]. Then, using well-known re-
lations from statistical physics [6] we obtain

_ R —85/T\5: er)‘/z_i_'a —8,/T
VFR—FTbln[(i——e D )(-T- §:i[;li(1———e | @)
where R is the universal gas constant, i is the molecular weight of water, ®p is the characteristic Debye tem-
perature ' ‘
0, = h¥/8n2ki, 3
1is the moment of inertia of the water molecule around the dipole axis, h is Planck's constant, k is Boltzmann's

constant, 6=2 is the symmetry factor of the water molecule, and ®,, ®,, @, are the characteristic temperatures
of internal vibrations of the water molecule @;=5510K; ©®,=2370K; @;=5660K).

As in [7], we define the correction AF; in the form
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AF, = -f} Tln(1 - Z)m, )

where Z;(v, T) is a certain unknown function.

We will determine it in such a way that when Z; >1 expression (2) reduces to the free energy of an
ideal-gas nondissociative state of the water molecule [6]

R h2 3/2( N4 \(6,8,06 \V2. 9 3 —eyT;
Fig = m T ]n[( 2nka) 2.72;10)( T3 Vﬂ_!';[iﬂ —e 0} + FEH,O’

where v is the specific volume, m is the weight of the water molecule, NA is Avogadro's number, @ri, Or,,
@, are the characteristic temperatures defined by expression (3), in which 1, I, and I; correspond to the

moments of inertia of the water molecule around three mutually perpendicular directions, and @r1 =40,1K;

®r,=20.9K; ®r3=13.3K.

From the limiting-transition condition we obtain
Zy = Aw=tT-52[1 — exp(—B6,/T) -5, ~ 5)

h2

/
where 4, = (ank) PXPTY 72;1

(6,,8,,)1/2 = 0,02K5/2 . m? . kg 1.

As in (4) we define the correction AF, in the form
AFy= — 3 TIn(1 + 23)"™ (6)

and we require that when Z,>1 expression (6) reduces to the free energy of an ideal~gas completely dissociated '
mixture of components of the water molecule consisting of atoms of oxygen and hydrogen

R hxz&/ﬂ (NA/p')Z/S 9/2
Fé -7 T’T Tln [ ané)/:’m%{:’ (2,72)2/31:Tu2/3 + Feo + Fem,

wheremgpandmyjare the masses of the oxygen and hydrogen atoms, and FeQ and Fpy are the free energies
of the electron state of the atoms of oxygen and hydrogen, respectively.

The constants ny and n, in expressions (4) and (6) are free parameters, Their values (n;=0.4 and n,=
0.5) are chosen so as to obtain the best correspondence between the thermodynamic functions obtained and
the experimental data, The free energy of the electron state Fe can be represented in general form as follows:

F,—— % Tlng,e T 1 Fy, )

where g, and &, are the statistical weight and energy in the ground state, respectively, and Fgp i8 the free
energy of the electron excitation,

Then from the limiting-transition conditions we have

Z, = App*T—%2exp(—e/kT) for T<7.38.10*K,
Z, = As*T¥? exp (e/kT) for T >>7.38.10% K

where

1

@m)kpt2pd2nd2, 12208082

3 3
- II .11 ©; =86 .10 . ®)

4,= 4h8 :
N8om,0n" =1 =1

Aty=1,067" 10"6,uoand by are the atomic weights of oxygen and hydrogen, and € is the dissociation energy of
the water molecul: into oxygen and hydrogen atoms.

In this paper the expression for Fep is not constructed, To describe the pressure pe and the energy
Ep of thermal excitation of the electrons, we use interpolation formulas, refined compared with those in [8],
constructed on the basis of numerical calculations of the Tomas— Fermi model of the atom [9]. Using (1), (2),
and (4)~(8) and well-known thermodynamlc relations, we obtain the following expressions for the pressure and
the internal energy:

" p = pxtpx + pou + Ap; + Apyt pe; ©)
E=FE,+ E;+ Eou + AE, 4 AE, + E,, (10)

where px and Ey are the pressure and energy of elastic interaction,
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where v=v/v, and vy=10"% m3/kg. n Eq. (11) y is Gruneisen's constant. We can assume that y and the tem-
perature ®p, are functions only of the specific volume. We will then have the relation [6]

Bp = Opuexp(—j-}dv).
AN Vo

The quantity ®D0 can be found from data on the velocity of sound in a normal volume v,. Using the Debye ap~
proximation and assuming that the water molecule possesses five Debye degrees of freedom, we obtain

0, =(h/Ek)5N/4nw)/a.
For v¢=1,0018-107 m%kg and a,=1483 m/sec, we have ®p =170°K.
We will determine the form of the function y(v) on the basis of the following representations. Asymptotic
values of this function are known [6, 10]
lim y (v) = 0.5, lim y(v) = 2/3.
. To obtain intermediate points we use a series of experimental isochores in the supercritical region of states,
in which poy=0.

) A consideration of the isochores enables one to eliminate p; for each pair of temperatures, and to deter-
mine the quantities y and ®p from (9). The calculated values of y(v) can be approximated by the relations

7 = 0.4053 + 29.10(c — 0.0949)® for ¢ << 0.1,
y = 0,3437 + 0.3530(c + 0.32)? for OA< o<1,

7 = 0.0282 + 0.93050 for 1< o<<1,2,
7 = 1/2 + [0/(1,80% — 4.15294c + 3.88593) It for ¢ > 1.2,

where o=vy/v.

The function p, was found in several stages. In the density range 0<1.3, we used well-known data on the
relation between p, v, and T of water and water vapor [3, 4]. The value of py was found in the supercritical
temperature range in which poy=0. The value of px was found as the difference between the total pressure
and the thermal part of Eq. (9). Assuming these values of py to hold in the temperature range T < Ter and using
data on the relation between p, v and T, and also Eq. @) we obtained the components of the pressure pogy.

This enabled us to use data on the dynamic compressibility of water to determine px in the density range
1.3<0<2.3 using Egs. @) and (10) and the general conditions on the front of a shock wave (for example, [11]),
In the range of superhigh compressions we used the results of a calculation of the cold component of the pres-
sure using the Tomas= Fermi model [9].

The function px (v) was smoothly interpolated between these regions., The results of a calculation of px

. 4
are shown in Table 1 in the form of interpolation relations px= (ao + 21 aiu"+i‘1) 10—1 Pa .
1=
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TABLE 2

Deviation from [4), %

P10,
Pa 8T b0y L) g YE—E0), & E—E.)g
1 —0,12 —0,04 -0, —0,8 143
2 - —0,05 40,02 | —0,6 +0,1 14,0
4 —0,04 —0,04 —0,04 10,3 48,7
6 —0,03 -—0,05 +1,7 -+0,3 +3,4
8 40,00 | —o0,01 43,1 40,4 43,3
10 10,06 10,04 13,4 +0,4 +3,2
20 40,06 —0,02 H14 0.0 424
40 40,01 —0,18 —4,3 —0,8 —0,42
80 —0,19 —0,17 —0,5 —1,5 —1,1
100 —0,16 --0,08 42,3 —1,5 —1,0
120 . | 40,02 40,06 | 21 —1,8 —1,0
140 —0,08 —0,32 —0,5 —1,8 —1,0
160 —0,08 —0,41 +4,6 —1,9 10,1
180 —0,5 40,30 412 15 +1,5
200 40,03 | 40,64 414 —0,7 +0,6
25 0 —4,2 49 —1,8 127

The function poyg (v, T) can be represented in the form
por = f{®)f(T), (12)

where
f1lv)= 7.08(v — 0,84467)(1.90956 — v)expl—1.94(6 — 1) 1;
F2(T)=1[85.7935(100/T)*— 25,9612(100/ )2+ 1.040624(100/7) 1-10° pa

with T < 353°K;

Fo(T)= 8.0963-1013(100/ T2 B Pa for T > 353 °K.

The component of the internal energy Ey is found using the relation E, = — y px (0)dv.

Do

To determine Eqy we used the thermodynamic identity
(0EI3v)y = T(@p/dT),—p- (13)
Substituting relation (12) into (13) and integrating with respect to v from v,=10"% m3/kg, we obtain
Eon = Eon(ve, T)— W(T)0.365exp[—1,94@ — 1)1 @— 1)(0,7233 — 0)10° 1/kg,

where
Y(T)= —13.23f,(T) for T > 353K; .
Y(T)= —3.4317-10(100/T)* - 7.78-101°(100/T)2 for T < 353 °K.

We found the function Eqy(Vy, T) using the experimental isochore v=vy and Eq. (10). Approximation of
the results obtained gives the following relatlon- '

—2.2.1034-6.87 — 5.25 . 107372
T 33 i/xg,

e

The thermodynamic functions obtained are suitable for describing the uniform states of é liquid and gas. They
agree with the data given in [3, 4] to within 5% with respect to the pressure and internal energy in the range
p>5°10° Pa,

We will consider the problem of describing the thermodynamic properties in the region of the two-phase
states. For an analytical description of the parameters of the state at the two-phase boundary, we approximated
the existing data. The boundary of the region of two~phase states was determined from the well~-known condi~
tions consisting of equating the pressure, temperature, and Gibbs energy on both sides of it.

EOH (Uo’ T) = 0,_461_6 M 10—3
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Table 2 compares the results of calculations with the data given in {4].

In the approximation we used asymptotic representations of the parameters in the neighborhood of the
eritical point (vop, Ter), Obtained using the well-known asymptotics [6] for the pressure and volume

E m — [Ty 412 —~(BA2)(ve; — v)* Moy, — V) —(p,, — CT_ )v_, — v)+ const,
S~ —(4¥2) v ¢y — v)* — Clv, — v)+ const,
where S is the entropy, C=2.8-10 N/m?-°K, A=0.14-10'2 J/m®- °K, and B/A=16"10° kg?- °K/m?,
As a result, the following relations are obtained:

E, —E,=2,056 - 10~° —[0.00655 (%% — T2) +

1-68.8) Top — T]10™ %5, Yhg, ‘ (14)
S, — So = 8y + 3.48-10-3 —[0,01313(Tey — )+
+ 042127, —T1 10-%g, I/kg-K, (15)

b, =y — 0433) Ty — T 109, mike,

v = Uor + 0433V Ty — T 10-%,4, m¥ig,

where
fe =1 —0,055[(T,, — T)exp(—(T,,—T)/200)11/%
Js =1 — 0,455[1 —(1 — (Lo —T)/190) ] 65,
Fox = 0.221 4 0.779%xp[—(T o, — T)*%/9,41;
Sy = SIT = 273K, v = 10~ m¥kg};
L = SI[T = 372K, p = 105Pa]~1,3-10-° J/kg+ K;
Ty = 64TH; vy = 3.17-10~* m¥kg
(the subscripts I and g relate to the condensate—~two-phase state boundary and the two-phase state—~gas bound-
ary, respectively).

For the pressure both at the boundary of the phase and over the whole two-phase region, the following
interpolation relation holds:
p =T —247)/125]%%°10%Pa (16)
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TABLE 3

u/as |0—0,5| 0,5—1,5 | 1,5—150 | =150

a 1 1,15 1,8 —10
b 2 1,7 1,25 1,33

For the two~phase region, we will have
E@w, T)y=[Top/oT — (D)1l — vy (T) 1+ E (1),
§ = 8 (I)+Ilv — v, (1) ldp/dT,

where Ej, S;, and p(T) are found from (14), (15), and (16).

In order to check the accuracy of the model obtained, we made a series of comparisons with existing
experimental and theoretical data,

A comparison of the shock adiabatic [1] with the data of model () and (10) showed that the difference
between them with respect to pressure is not more than 2%, while the pressures on the isentropics differ by
not more than 5%.

The difference between the data on the velocity of sound [12-14] in the region of uniform states and the
data given by (3) and (10) does not exceed 1%, and in the region of the two~phase states it does not exceed 5%.
The isochore heat capacity (15) differs from that given by 8) and (10) by not more than 5%.

Below we give as an illustration some theoretical data on the shock adiabatic and the veloclty of sound
which is of interest for analyzing different gasdynamic problems.

Figure 1 shows the results of calculations of the shock adiabatic of water (1-6 are the shock adiabatics
starting from the region of the two-phase states for py;=10° Pa and v,=0.1, 0.16, 0.2, 0.22, 0.5, and 1,0 m%/kg,
reSpectlvely, 7 is the shock adiabatic of water starting from the point of the normal state (T,=293°K and
po_l(?/ Pa), 8 is the boundary of the two-phase region, and 9 is the asymptotic of the limiting compression
for vp/v=4).,

The results of calculations of the shock adiabatic, starting from the normal state, can be approximated
to within 2% by the relation

Nlay = a + bula,,
- where a, is the velocity of sound in the unperturbed medium (Table 3).

It is seen from Fig. 1 that the shock adiabatics, starting from the two-phase state, in a number of cases
have an anomalous form: When the pressure is increased the degree of compression decreases. This effect
is similar to the well-known shock compression effect of porous condensed media,

Under certain conditions the shock adiabatics from the region of the two-phase state enter the region
of the condensed state and then return. ¥ should be noted that in the limit at high pressures all the shock
adiabatics approach a limiting fourfold compression with respect to the initial volume,

Figure 2 shows curves of the distribution of the velocity of sound along the two~phase curve both the
two-phase side and from the uniform side ¢the continuous curves are our calculations, and the dashed curves
are the results obtained in [14]; 1, critical point; 2, two-phase medium; 3, uniform medium; 4, gas; 5, con~
densed medium); it is seen that when changing from the condensed state into the two-phase region the velocity
of sound decreases from 103 to (1-10%) m/sec.

From the gas side this transition is accompanied by a jump of several percent, From the gasdynamic
point of view the boundary between the condensed state and the two-phase state {s inert with respect to the
propagation of small perturbations, which may lead to the occurrence of different flow singularities.

On the whole the comparison and the ealculations carried out show that the interpolation functions ob-
tained reflect quite satisfactorily the well-known thermodynamic properties of water and water vapor in the
pressure range p > 10° Pa, Hence, the model can be used to solve different applied problems in the mechanics
of continuous media, problems of the thermal conduction with phase transitions, etc.
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